Estimation of alternative splicing variability in human populations.
نویسندگان
چکیده
DNA arrays have been widely used to perform transcriptome-wide analysis of gene expression, and many methods have been developed to measure gene expression variability and to compare gene expression between conditions. Because RNA-seq is also becoming increasingly popular for transcriptome characterization, the possibility exists for further quantification of individual alternative transcript isoforms, and therefore for estimating the relative ratios of alternative splice forms within a given gene. Changes in splicing ratios, even without changes in overall gene expression, may have important phenotypic effects. Here we have developed statistical methodology to measure variability in splicing ratios within conditions, to compare it between conditions, and to identify genes with condition-specific splicing ratios. Furthermore, we have developed methodology to deconvolute the relative contribution of variability in gene expression versus variability in splicing ratios to the overall variability of transcript abundances. As a proof of concept, we have applied this methodology to estimates of transcript abundances obtained from RNA-seq experiments in lymphoblastoid cells from Caucasian and Yoruban individuals. We have found that protein-coding genes exhibit low splicing variability within populations, with many genes exhibiting constant ratios across individuals. When comparing these two populations, we have found that up to 10% of the studied protein-coding genes exhibit population-specific splicing ratios. We estimate that ~60% of the total variability observed in the abundance of transcript isoforms can be explained by variability in transcription. A large fraction of the remaining variability can likely result from variability in splicing. Finally, we also detected that variability in splicing is uncommon without variability in transcription.
منابع مشابه
Role of Aberrant Alternative Splicing in Cancer
Alternative splicing can alter genome sequence and as a consequence, many genes change to oncogenes. This event can also affect protein function and diversity. The growing number of study elucidate the pathological influence of impaired alternative splicing events on numerous disease including cancer. Here, we would like to highlight the significant role of alternative splicing in cancer biolog...
متن کاملTranscriptome Sequencing from Diverse Human Populations Reveals Differentiated Regulatory Architecture
Large-scale sequencing efforts have documented extensive genetic variation within the human genome. However, our understanding of the origins, global distribution, and functional consequences of this variation is far from complete. While regulatory variation influencing gene expression has been studied within a handful of populations, the breadth of transcriptome differences across diverse huma...
متن کاملCell-to-cell variability of alternative RNA splicing
Heterogeneity in the expression levels of mammalian genes is large even in clonal populations and has phenotypic consequences. Alternative splicing is a fundamental aspect of gene expression, yet its contribution to heterogeneity is unknown. Here, we use single-molecule imaging to characterize the cell-to-cell variability in mRNA isoform ratios for two endogenous genes, CAPRIN1 and MKNK2. We sh...
متن کاملExpression Pattern of Alternative Splicing Variants of Human Telomerase Reverse Transcriptase (hTERT) in Cancer Cell Lines Was not Associated with the Origin of the Cells
Telomerase and systems controlling their activity have been of great attention. There are controversies regarding the role of the alternative splicing forms of the human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase. Therefore, the correlation between telomerase enzyme activity, the abundance of alternatively spliced variants of hTERT and doubling time of a seri...
متن کاملIn vitro Interaction and Colocalization of HSV-1 ORF P with a Cellular Splicing Factor (SC35) Using Pulldown Assay
Herpes simplex virus type-1 (HSV-1) causes a variety of diseases in human. This virus is a neurotropic pathogen of human that establishes latent infection in the sensory ganglia innervating the site of primary infection. A number of genes including ICP34.5 control HSV-1 pathogenicity and ICP34.5 has been identified as HSV-1 virulence gene. Open reading frame P (ORF P) is also a HSV-1 gene that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome research
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2012